Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Biomol Struct Dyn ; 42(1): 261-273, 2024.
Article in English | MEDLINE | ID: mdl-37061929

ABSTRACT

Sickle cell disease (SCD) is an autosomal recessive genetic disorder affecting millions of people worldwide. A reversible and selective DNMT1 inhibitor, GSK3482364, has been known to decrease the overall methylation activity of DNMT1, resulting in the increase of HbF levels and percentage of HbF-expressing erythrocytes in an in vitro and in vivo model. In this study, a structure-based virtual screening was done with GSK3685032, a co-crystalized ligand of DNMT1 (PDB ID: 6X9K) with an IC50 value of 0.036 µM and identified 3988 compounds from three databases (ChEMBL, PubChem and Drug Bank). Using this screening method, we identified around 15 compounds with XP docking scores greater than -8 kcal/mol. Further, prime MM-GBSA calculations have been performed and found compound SCHEMBL19716714 with the highest binding free energy of -83.31 kcal/mol. Finally, four compounds were identified based on glide energy and ΔG bind scores that have the most binding with DG7, DG19, DG20 bases and Lys1535, His1507, Trp1510, Ser1230, which were required for the target enzyme inhibition. Furthermore, molecular dynamics simulation studies of top ligands validate the stability of the docked complexes by examining root mean square deviations, root mean square fluctuations, solvent accessible surface area, and radius of gyration graphs from simulation trajectories. These findings suggest that the top four hit compounds may be capable of inhibiting DNMT1 and that additional in vitro and in vivo studies will be essential to prove the clinical effectiveness of the selected lead compounds.Communicated by Ramaswamy H. Sarma.


Subject(s)
Anemia, Sickle Cell , Molecular Dynamics Simulation , Humans , Molecular Docking Simulation , Protein Binding , Anemia, Sickle Cell/drug therapy , Ligands
2.
ACS Omega ; 8(46): 44287-44311, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38027360

ABSTRACT

The aurora kinase is a key enzyme that is implicated in tumor growth. Research revealed that small molecules that target aurora kinase have beneficial effects as anticancer agents. In the present study, in order to identify potential antibreast cancer agents with aurora kinase inhibitory activity, we employed QSARINS software to perform the quantitative structure-activity relationship (QSAR). The statistical values resulted from the study include R2 = 0.8902, CCCtr = 0.7580, Q2 LOO = 0.7875, Q2LMO = 0.7624, CCCcv = 0.7535, R2ext = 0.8735, and CCCext = 0.8783. Among the four generated models, the two best models encompass five important variables, including PSA, EstateVSA5, MoRSEP3, MATSp5, and RDFC24. The parameters including the atomic volume, atomic charges, and Sanderson's electronegativity played an important role in designing newer lead compounds. Based on the above data, we have designed six series of compounds including 1a-e, 2a-e, 3a-e, 4a-e, 5a-e, and 6a-e. All these compounds were subjected to molecular docking studies by using AutoDock v4.2.6 against the aurora kinase protein (1MQ4). Among the above 30 compounds, the 2-amino thiazole derivatives 1a, 2a, 3e, 4d, 5d, and 6d have excellent binding interactions with the active site of 1MQ4. Compound 1a had the highest docking score (-9.67) and hence was additionally subjected to molecular dynamic simulation investigations for 100 ns. The stable binding of compound 1a with 1MQ4 was verified by RMSD, RMSF, RoG, H-bond, molecular mechanics-generalized Born surface area (MM-GBSA), free binding energy calculations, and solvent-accessible surface area (SASA) analyses. Furthermore, newly designed compound 1a exhibited excellent ADMET properties. Based on the above findings, we propose that the designed compound 1a may be utilized as the best theoretical lead for future experimental research of selective inhibition of aurora kinase, therefore assisting in the creation of new antibreast cancer drugs.

3.
J Biomol Struct Dyn ; : 1-17, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37583290

ABSTRACT

Plants and phytocompounds gained more attention because of their unrivalled variety of chemical diversity. In this view, the present study was executed to predict the anticancer potential of Solanum torvum Swartz. fruits derived phytocompounds against one of the breast cancer target proteins (MAPK14, PDB ID: 5ETA, resolution: 2.80 Å) through pharmacoinformatics-based screening and molecular dynamics simulation tools. Initially, a graph theoretical network approach was used to visualize the genes, enzymes, and proteins involved in the signalling pathway of breast cancer and identify the significant target protein (MAPK14). A total of thirty-three active compounds were selected from S. torvum sw. through the IMPPAT database, and their structures were drawn by Chemsketch software. The drug-like behaviours of the compounds were assessed through pharmacokinetics and physicochemical characterization studies. Five compounds, namely chlorogenin (-10.90 kcal × mol-1), corosolic acid (-10.80 kcal × mol-1), solaspigenin (-10.80 kcal × mol-1), paniculogenin (-10.70 kcal × mol-1), spirostane-3,6-dione (-10.70 kcal × mol-1) exhibited top binding score against MAPK14, these are higher than that of the standard drug (Doxorubicin) (-8.60 kcal × mol-1). Additionally, the five top-binding compounds revealed better drug-likeness traits and the lowest toxicity profiles. MD simulation studies confirmed the stability of the top five scored compounds with the MAPK14 binding pockets. According to these findings, the selected five compounds might be used as significant MAPK14 inhibitors and can be used as new medicines for the treatment of breast cancer.Communicated by Ramaswamy H. Sarma.

4.
Molecules ; 28(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513386

ABSTRACT

Streptococcus mutans, a gram-positive oral pathogen, is the primary causative agent of dental caries. Biofilm formation, a critical characteristic of S. mutans, is regulated by quorum sensing (QS). This study aimed to utilize pharmacoinformatics techniques to screen and identify effective phytochemicals that can target specific proteins involved in the quorum sensing pathway of S. mutans. A computational approach involving homology modeling, model validation, molecular docking, and molecular dynamics (MD) simulation was employed. The 3D structures of the quorum sensing target proteins, namely SecA, SMU1784c, OppC, YidC2, CiaR, SpaR, and LepC, were modeled using SWISS-MODEL and validated using a Ramachandran plot. Metabolites from Azadirachta indica (Neem), Morinda citrifolia (Noni), and Salvadora persica (Miswak) were docked against these proteins using AutoDockTools. MD simulations were conducted to assess stable interactions between the highest-scoring ligands and the target proteins. Additionally, the ADMET properties of the ligands were evaluated using SwissADME and pkCSM tools. The results demonstrated that campesterol, meliantrol, stigmasterol, isofucosterol, and ursolic acid exhibited the strongest binding affinity for CiaR, LepC, OppC, SpaR, and Yidc2, respectively. Furthermore, citrostadienol showed the highest binding affinity for both SMU1784c and SecA. Notably, specific amino acid residues, including ASP86, ARG182, ILE179, GLU143, ASP237, PRO101, and VAL84 from CiaR, LepC, OppC, SecA, SMU1784c, SpaR, and YidC2, respectively, exhibited significant interactions with their respective ligands. While the docking study indicated favorable binding energies, the MD simulations and ADMET studies underscored the substantial binding affinity and stability of the ligands with the target proteins. However, further in vitro studies are necessary to validate the efficacy of these top hits against S. mutans.


Subject(s)
Dental Caries , Quorum Sensing , Humans , Biofilms , Streptococcus mutans , Molecular Docking Simulation , Ligands , Dental Caries/drug therapy
5.
Mol Divers ; 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37480422

ABSTRACT

In recent years, the viral outbreak named COVID-19 showed that infectious diseases have a huge impact on both global health and the financial and economic sectors. The lack of efficacious antiviral drugs worsened the health problem. Based on our previous experience, we investigated in vitro and in silico a series of quinoline-3-carboxylate derivatives against a SARS-CoV-2 isolate. In the present study, the in-vitro antiviral activity of a series of quinoline-3-carboxylate compounds and the in silico target-based molecular dynamics (MD) and metabolic studies are reported. The compounds' activity against SARS-CoV-2 was evaluated using plaque assay and RT-qPCR. Moreover, from the docking scores, it appears that the most active compounds (1j and 1o) exhibit stronger binding affinity to the primary viral protease (NSP5) and the exoribonuclease domain of non structural protein 14 (NSP14). Additionally, the in-silico metabolic analysis of 1j and 1o defines CYP2C9 and CYP3A4 as the major P450 enzymes involved in their metabolism.

6.
Mol Divers ; 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37280404

ABSTRACT

The global prevalence of obesity-related systemic disorders, including non-alcoholic fatty liver disease (NAFLD), and cancers are rapidly rising. Several of these disorders involve peroxisome proliferator-activated receptors (PPARs) as one of the key cell signaling pathways. PPARs are nuclear receptors that play a central role in lipid metabolism and glucose homeostasis. They can activate or suppress the genes responsible for inflammation, adipogenesis, and energy balance, making them promising therapeutic targets for treating metabolic disorders. In this study, an attempt has been made to screen novel PPAR pan-agonists from the ZINC database targeting the three PPAR family of receptors (α, γ, ß/δ), using molecular docking and molecular dynamics (MD) simulations. The top scoring five ligands with strong binding affinity against all the three PPAR isoforms were eprosartan, canagliflozin, pralatrexate, sacubitril, olaparib. The ADMET analysis was performed to assess the pharmacokinetic profile of the top 5 molecules. On the basis of ADMET analysis, the top ligand was subjected to MD simulations, and compared with lanifibranor (reference PPAR pan-agonist). Comparatively, the top-scoring ligand showed better protein-ligand complex (PLC) stability with all the PPARs (α, γ, ß/δ). When experimentally tested in in vitro cell culture model of NAFLD, eprosartan showed dose dependent decrease in lipid accumulation and oxidative damage. These outcomes suggest potential PPAR pan-agonist molecules for further experimental validation and pharmacological development, towards treatment of PPAR-mediated metabolic disorders.

7.
Eur J Med Chem ; 257: 115471, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37257213

ABSTRACT

Leishmaniasis is a complex of neglected tropical diseases caused by various species of leishmanial parasites that primarily affect the world's poorest people. A limited number of standard medications are available for this disease that has been used for several decades, these drugs have many drawbacks such as resistance, higher cost, and patient compliance, making it difficult to reach the poor. The search for novel chemical entities to treat leishmaniasis has led to target-based scaffold research. Among several identified potential molecular targets, enzymes involved in the purine salvage pathway include polyamine biosynthetic process, such as arginase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase, trypanothione reductase as well as enzymes in the DNA cell cycle, such as DNA topoisomerases I and II plays vital role in the life cycle survival of leishmanial parasite. This review mainly focuses on various heterocyclic scaffolds, and their specific inhibitory targets against leishmaniasis, particularly those from the polyamine biosynthesis pathway and DNA topoisomerases with estimated activity studies of various heterocyclic analogs in terms of their IC50 or EC50 value, reported molecular docking analysis from available published literatures.


Subject(s)
Leishmania , Leishmaniasis , Humans , Molecular Docking Simulation , Goals , Leishmaniasis/drug therapy , Polyamines/metabolism
8.
Med Chem ; 18(6): 629-654, 2022.
Article in English | MEDLINE | ID: mdl-34344295

ABSTRACT

BACKGROUND: From time immemorial, natural products have been used for the treatment of various diseases. Various natural products, their semisynthetic derivatives, and synthetic analogs have been explored for their anti-infective properties. One such group of natural compounds that has been widely explored is manzamine alkaloids. Manzamine alkaloids are complex natural compounds consisting of a ß-carboline nucleus attached to a pentacyclic ring system; they were first isolated from a marine sponge during the 1980s. OBJECTIVE: This review aims to provide a critical overview on the anti-infective potential of manzamine alkaloids. METHODS: A comprehensive and exhaustive review of the literature on manzamine alkaloids, and their isolation, anti-infective properties, and mechanism of action, is presented. RESULTS: Various manzamine alkaloids have been isolated and have been found to exhibit potent antiinfective activities like antibacterial, antimalarial, antiviral, antifungal, antileishmanial, among others. These manzamine alkaloids exhibit their anti-infective activity by inhibiting targets like GSK-3ß, MtSK. CONCLUSION: This present review along with structure-activity relationship study of manzamine alkaloids for their anti-infective activity will be useful for further development of semisynthetic manzamine analogs as potent anti-infective agents with better therapeutic potential and reduced toxicity.


Subject(s)
Alkaloids , Anti-Infective Agents , Biological Products , Porifera , Alkaloids/pharmacology , Animals , Anti-Infective Agents/pharmacology , Biological Products/pharmacology , Carbazoles/pharmacology , Glycogen Synthase Kinase 3 beta
9.
Mini Rev Med Chem ; 21(4): 398-425, 2021.
Article in English | MEDLINE | ID: mdl-33001013

ABSTRACT

ß-Carboline, a naturally occurring indole alkaloid, holds a momentous spot in the field of medicinal chemistry due to its myriad of pharmacological actions like anticancer, antiviral, antibacterial, antifungal, antileishmanial, antimalarial, neuropharmacological, anti-inflammatory and antithrombotic among others. ß-Carbolines exhibit their pharmacological activity via diverse mechanisms. This review provides a recent update (2015-2020) on the anti-infective potential of natural and synthetic ß-carboline analogs focusing on its antibacterial, antifungal, antiviral, antimalarial, antileishmanial and antitrypanosomal properties. In cases where enough details are available, a note on its mechanism of action is also added.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Carbolines/chemistry , Carbolines/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Carbolines/chemical synthesis , Chemistry Techniques, Synthetic , Drug Discovery , Fungi/drug effects , Humans , Mycoses/drug therapy , Protozoan Infections/drug therapy , Virus Diseases/drug therapy , Viruses/drug effects
10.
Drug Dev Res ; 82(3): 309-340, 2021 05.
Article in English | MEDLINE | ID: mdl-33170541

ABSTRACT

Enhanced cancer treatment remains as one of the focused areas for researchers around the world. Hence, the progress in this direction will be a challenge and an opportunity in, inter-disciplinary field to mitigate the suffering of millions in the upcoming decades. As we see, cancer death rate has also progressively increased despite the current impressive treatment regimens but also due to the non-availability of vaccines and the re-occurring of cancer in substantially recovered patients. Currently, numerous treatment strategies like surgical removal of solid tumors followed by radiation with a combination of immunotherapy/chemotherapy by the researchers and clinicians are routinely being followed. However, recurrence and distant metastasis often occur following radiation therapy, commonly due to the generation of radio-resistance through deregulation of the cell cycle, cell death, and inhibition of DNA damage repair mechanisms. Thus, chemotherapeutic/immunotherapeutic treatment systems have progressed remarkably in the latest years owing to destroying tumors, noninvasive, and affordable charge of therapy. But, traditional chemotherapeutic approaches target the DNA of mutated and normal healthy cells, resulting in a significantly increased risk of toxicity and drug resistance. Thus, many receptors targeted therapies are in the developmental phase of discovery. Cancer cells have a specialized set of surface receptors that provide potential targets for cancer therapeutics. Cell surface receptor-dependent endocytosis is well a known major mechanism for the internalization of macromolecular drugs. This review emphasizes the recent development of several surface receptors mediated cancer-targeting approaches for the effective delivery of various therapeutic formulations.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Drug Delivery Systems , Neoplasms/drug therapy , Receptors, Cell Surface/drug effects , Antineoplastic Agents/administration & dosage , Humans , Nanotechnology
11.
Naunyn Schmiedebergs Arch Pharmacol ; 394(4): 735-749, 2021 04.
Article in English | MEDLINE | ID: mdl-33156389

ABSTRACT

The primary requirement for curing cancer is the delivery of essential drug load at the cancer microenvironment with therapeutic efficacy. Considering this, the present study aims to formulate "Rutin"-encapsulated solid lipid nanoparticles (SLNs) for effective brain delivery across the blood-brain barrier (BBB). Rutin-loaded SLNs were fabricated by oil-in-water microemulsion technique and were characterized for their physicochemical properties. The in vivo biodistribution study of rutin-loaded SLNs was studied using Rattus norvegicus rats. Subsequently, in silico molecular docking and dynamic calculations were performed to examine the binding affinity as well as stability of rutin at the active site of target protein "epidermal growth factor receptor (EGFR)." Formulated rutin-loaded SLNs were predominantly spherical in shape with an average particle diameter of 100 nm. Additionally, the biocompatibility and stability have been proved in vitro. The presence and biodistribution of rutin in vivo after 54 h of injection were observed as 15.23 ± 0.32% in the brain, 8.68 ± 0.63% in the heart, 4.78 ± 0.28% in the kidney, 5.04 ± 0.37% in the liver, 0.92 ± 0.04% in the lung, and 11.52 ± 0.65% in the spleen, respectively. Molecular docking results revealed the higher binding energy of - 150.973 kJ/mol of rutin with EGFR. Molecular dynamic simulation studies demonstrated that rutin with EGFR receptor complex was highly stable at 30 ns. The observed results exemplified that the formulated rutin-loaded SLNs were stable in circulation for a period up to 5 days. Thus, rutin-encapsulated SLN formulations can be used as a promising vector to target tumors across BBB. Graphical abstract.


Subject(s)
Lipids/administration & dosage , Nanoparticles/administration & dosage , Rutin/administration & dosage , Animals , Brain/metabolism , Brain Neoplasms/drug therapy , Class I Phosphatidylinositol 3-Kinases/metabolism , Drug Liberation , ErbB Receptors/metabolism , Lipids/chemistry , Lipids/pharmacokinetics , Male , Molecular Docking Simulation , Nanoparticles/chemistry , Neurofibromin 1/metabolism , Rats , Rutin/chemistry , Rutin/pharmacokinetics , Tissue Distribution , ras Proteins/metabolism
12.
Nanotechnology ; 32(9): 095101, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33113518

ABSTRACT

Lower doses of capsaicin (8-methyl-N-vanillyl-6-nonenamide) have the potential to serve as an anticancer drug, however, due to its pungency, irritant effect, poor water solubility and high distribution volume often linked to various off-target effects, its therapeutic use is limited. This study aimed to determine the biodistribution and anticancer efficacy of capsaicin loaded solid lipid nanoparticles (SLNs) in human hepatocellular carcinoma in vitro. In this study, SLNs of stearic acid loaded with capsaicin was formulated by the solvent evaporation-emulsification technique and were instantly characterized for their encapsulation efficiency, morphology, loading capacity, stability, particle size, charge and in vitro drug release profile. Synthesized SLNs were predominantly spherical, 80 nm diameter particles that proved to be biocompatible with good stability in aqueous conditions. In vivo biodistribution studies of the formulated SLNs showed that 48 h after injection in the lateral tail vein, up to 15% of the cells in the liver, 1.04% of the cells in the spleen, 3.05% of the cells in the kidneys, 3.76% of the cells in the heart, 1.31% of the cells in the lungs and 0% of the cells in the brain of rats were determined. Molecular docking studies against the identified targets in HepG2 cells showed that the capsaicin is able to bind Abelson tyrosine-protein kinase, c-Src kinase, p38 MAP kinase and VEGF-receptor. Molecular dynamic simulation showed that capsaicin-VEGF receptor complex is highly stable at 50 nano seconds. The IC50 of capsaicin loaded SLNs in HepG2 cells in vitro was 21.36 µg × ml-1. These findings suggest that capsaicin loaded SLNs are stable in circulation for a period up to 3 d, providing a controlled release of loaded capsaicin and enhanced anticancer activity.


Subject(s)
Antineoplastic Agents/pharmacology , Capsaicin/pharmacology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Receptors, Vascular Endothelial Growth Factor/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , CSK Tyrosine-Protein Kinase/metabolism , Capsaicin/chemical synthesis , Capsaicin/pharmacokinetics , Carcinoma, Hepatocellular/drug therapy , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Design , Gene Expression Regulation, Neoplastic/drug effects , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Lipids , Liver Neoplasms/drug therapy , Models, Molecular , Molecular Dynamics Simulation , Nanoparticles , Particle Size , Proto-Oncogene Proteins c-abl/metabolism , Rats , Receptors, Vascular Endothelial Growth Factor/chemistry , Solubility , Tissue Distribution , p38 Mitogen-Activated Protein Kinases/metabolism
13.
ACS Omega ; 5(39): 25228-25239, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33043201

ABSTRACT

A new class of compounds formed by the linkage of -C(O)-NH- with pyridine and thiazole moieties was designed, synthesized, and characterized by various spectral approaches. The newly characterized compounds were evaluated for their antimicrobial as well as anti-inflammatory properties. The in vitro anti-inflammatory activity of these compounds was evaluated by denaturation of the bovine serum albumin method and showed inhibition in the range of IC50 values-46.29-100.60 µg/mL. Among all the tested compounds, compound 5l has the highest IC50 value and compound 5g has the least IC50 value. On the other hand, antimicrobial results revealed that compound 5j showed the lowest MIC values and compound 5a has the highest MIC values. Furthermore, molecular docking of the active compounds demonstrated a better docking score and interacted well with the target protein. Physicochemical parameters of the titled compounds were found suitable in the reference range only. The in silico molecular docking study revealed their COX-inhibitory action. Compound 5j emerged as a significant bioactive molecule among the synthesized analogues.

14.
Bioorg Chem ; 104: 104269, 2020 11.
Article in English | MEDLINE | ID: mdl-32947136

ABSTRACT

COVID-19 caused by the novel SARS-CoV-2 has been declared a pandemic by the WHO is causing havoc across the entire world. As of May end, about 6 million people have been affected, and 367 166 have died from COVID-19. Recent studies suggest that the SARS-CoV-2 genome shares about 80% similarity with the SARS-CoV-1 while their protein RNA dependent RNA polymerase (RdRp) shares 96% sequence similarity. Remdesivir, an RdRp inhibitor, exhibited potent activity against SARS-CoV-2 in vitro. 3-Chymotrypsin like protease (also known as Mpro) and papain-like protease, have emerged as the potential therapeutic targets for drug discovery against coronaviruses owing to their crucial role in viral entry and host-cell invasion. Crystal structures of therapeutically important SARS-CoV-2 target proteins, namely, RdRp, Mpro, endoribonuclease Nsp15/NendoU and receptor binding domain of CoV-2 spike protein has been resolved, which have facilitated the structure-based design and discovery of new inhibitors. Furthermore, studies have indicated that the spike proteins of SARS-CoV-2 use the Angiotensin Converting Enzyme-2 (ACE-2) receptor for its attachment similar to SARS-CoV-1, which is followed by priming of spike protein by Transmembrane protease serine 2 (TMPRSS2) which can be targeted by a proven inhibitor of TMPRSS2, camostat. The current treatment strategy includes repurposing of existing drugs that were found to be effective against other RNA viruses like SARS, MERS, and Ebola. This review presents a critical analysis of druggable targets of SARS CoV-2, new drug discovery, development, and treatment opportunities for COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drug Discovery , Protease Inhibitors/therapeutic use , SARS-CoV-2/drug effects , Amino Acid Sequence , Animals , COVID-19/epidemiology , Drug Repositioning , Humans , Pandemics
15.
Eur J Med Chem ; 195: 112275, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32283298

ABSTRACT

Drug repurposing is a strategy consisting of finding new indications for already known marketed drugs used in various clinical settings or highly characterized compounds despite they can be failed drugs. Recently, it emerges as an alternative approach for the rapid identification and development of new pharmaceuticals for various rare and complex diseases for which lack the effective drug treatments. The success rate of drugs repurposing approach accounts for approximately 30% of new FDA approved drugs and vaccines in recent years. This review focuses on the status of drugs repurposing approach for various diseases including skin diseases, infective, inflammatory, cancer, and neurodegenerative diseases. Efforts have been made to provide structural features and mode of actions of drugs.


Subject(s)
Drug Discovery/methods , Drug Repositioning/methods , Animals , Chemistry, Pharmaceutical , Humans
16.
3 Biotech ; 10(3): 136, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32158632

ABSTRACT

This study aimed to formulate and characterize the folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii to enhance the anticancer activity. Twenty valued bioactive compounds (3-hydroxy benzoicacid, gallicacid, chlorogenicacid, cinnamicacid, artemiseole, hydrazine carbothioamide, etc.,) are confirmed from methanol extract of K. alvarezii using analytical techniques like HPLC and GC-MS. The delivery of bioactive compounds of K. alvarezii via naturally overexpressed folate receptor (FR) to FR-positive breast cancer cells was studied. FR targeted PEGylated liposome was constructed by modified thin-film hydration technique using FA-PEG-DSPE/cholesterol/DSPC (5:40:55) and bioactive compounds of K. alvarezii was encapsulated. Their morphology, size, shape, physiological stability and drug release kinetics were studied. The study reports of K. alvarezii extract-encapsulated PEGylated liposome showed spherical shaped particles with amorphous in nature. The mean diameter of K. alvarezii extract-encapsulated PEGylated and FA-conjugated PEGylated liposomes was found to be 110 ± 6 nm and 140 ± 5 nm, respectively. Based on the stability studies, it could be confirmed that FA-conjugated PEGylated liposome was highly stable in various physiological buffer medium. FA-conjugated PEGylated liposome can steadily release the bioactive compounds of K. alvarezii extract in acidic medium (pH 5.4). MTT assay demonstrated the concentration-dependent cytotoxicity against MCF-7 cells after 24 h with IC50 of 81 µg/mL. Also, PEGylated liposome enhanced the delivery of K. alvarezii extract in MCF-7 cells. After treatment, typical apoptotic morphology of condensed nuclei and distorted membrane bodies was picturized. Additionally, PEGylated liposome targets the mitochondria of MCF-7 cells and significantly increased the level of ROS and contributes to the damage of mitochondrial transmembrane potential. Hence, PEGylated liposome could positively deliver the bioactive compounds of K. alvarezii extract into FR-positive breast cancer cells (MCF-7) and exhibit great potential in anticancer therapy.

17.
RSC Adv ; 10(61): 37098-37115, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-35521286

ABSTRACT

Tuberculosis (TB), one of the most prevalent infections, is on the rise today. Although there are drugs available in the market to combat this lethal disorder, there are several shortcomings with the current drug regimen, such as prolonged treatment period, drug resistance, high cost, etc. Hence, it is inevitable for the current researchers across the globe to embark on new strategies for TB drug discovery, which will yield highly active low cost drugs with a shorter treatment period. To achieve this, novel strategies need to be adopted to discover new drugs. Pantothenate Synthetase (PS) is one such striking drug target in Mycobacterium tuberculosis (MTB). It was observed that the pantothenate biosynthetic pathway is crucial for the pathogenicity of MTB. Pantothenate is absent in mammals and needs to be obtained from dietary sources. Hence, the pantothenate biosynthesis pathway is an impending target for emerging new therapeutics to treat TB. Worldwide, several approaches have been implemented by researchers in the quest for these inhibitors such as high-throughput screening, simulating the reaction intermediate pantoyl adenylate, use of vibrant combinatorial chemistry, hybridization approach, virtual screening of databases, inhibitors based on the crystal structure of MTB PS, etc. The present review recapitulates current developments in PS inhibitors, important analogues of numerous metabolic intermediates, and newly established inhibitors with innumerable chemical structures.

18.
Biotechnol Prog ; 36(1): e2904, 2020 01.
Article in English | MEDLINE | ID: mdl-31496124

ABSTRACT

The following study was done to assess the glucose utilizing efficiency of Indoloquinoxaline derivative incorporated keratin nanoparticles (NPs) in 3T3-L1 adipocytes. Indoloquinoxaline derivative had wide range of biological activities including antidiabetic activity. In this view, Indoloquinoxaline moiety containing N, N-dimethyl (3-fluoro-6H-indolo [3,2-b] quinoxalin-6-yl) methanamine compound was designed and synthesized, and further it is incorporated into keratin nanoparticles. The formulated NPs, drug entrapment efficiency, releasing capacity, stability, and physicochemical properties were characterized by various spectral analyzer and obtained results of characterizations were confirmed the properties of NPs. The analysis of mechanism underlying the glucose utilization of NPs was examined through molecular docking with identified target, and observed in silico study reports shown strong interaction of NPs in the binding pockets of AMPK and PTP1B. Based on the in silico screening, the formulated NPs was performed for in vitro cellular viability and glucose uptake studies on 3T3-L1 adipocytes. Interestingly, 40 µg of NPs displayed 78.2 ± 2.76% cellular viability, and no cell death was observed at lower concentrations. Further, the concentration dependent glucose utilization was observed at different concentrations of NPs in 3T3-L1 adipocytes. The results of NPs (40 µg) on glucose utilization have revealed eminent result 58.56 ± 4.54% compared to that of Metformin (10 µM) and Insulin (10 µM). The identified results clearly indicated that Indoloquinoxaline derivative incorporated keratin NPs significantly increased glucose utilization efficiency and protect the cells against the insulin resistance.


Subject(s)
Drug Design , Glucose/metabolism , Keratins/pharmacology , Molecular Docking Simulation , Nanoparticles/chemistry , Quinoxalines/pharmacology , 3T3-L1 Cells , Animals , Cell Survival/drug effects , Cells, Cultured , Drug Liberation , Hair/chemistry , Humans , Keratins/chemistry , Keratins/isolation & purification , Mice , Molecular Structure , Particle Size , Quinoxalines/chemical synthesis , Quinoxalines/chemistry
19.
Article in English | MEDLINE | ID: mdl-31241020

ABSTRACT

Psoralen or furocoumarin is a linear three ring heterocyclic compound. Psoralens are planar, tricyclic compounds, consisting of a furan ring fused to a coumarin moiety. Psoralen has been known for a wide spectrum of biological activities, spanning from cytotoxic, photosensitizing, insecticidal, antibacterial to antifungal effect. Thus, several structural changes were introduced to explore the role of specific positions with respect to the biological activity. Convenient approaches utilized for the synthesis of psoralen skeleton can be categorized into two parts: (i) the preparation of the tricyclic ring system from resorcinol, (ii) the exocyclic modification of the intact ring system. Furthermore, although psoralens have been used in diverse ways, we mainly focus in this work on their clinical utility for the treatment of psioraisis, vitiligo and skin-related disorder.


Subject(s)
Ficusin , Furocoumarins/pharmacology , Skin Diseases/drug therapy , Biological Availability , Dermatologic Agents/pharmacology , Ficusin/chemistry , Ficusin/pharmacology , Humans , Photosensitizing Agents/pharmacology , Plants, Medicinal
20.
Nanotechnology ; 31(15): 155102, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-31775133

ABSTRACT

Targeted drug delivery systems are a promising field of research. Nano-engineered material-mediated drug delivery possesses remarkable potential for the treatment of various malignancies. Here, folic acid (FA)-conjugated bovine serum albumin (BSA) nanoparticles (NPs) were used to encapsulate myricetin (Myr). Subsequently, the delivery of Myr via naturally overexpressed folate receptor (FR) to FR-positive breast cancer cells was studied. Myr-loaded BSA NPs were assembled by modified desolvation cross-linking technique. An FA-conjugated carrier, N-hydroxysuccinimide (NHS)-FA ester, was successfully synthesized. Its functional and structural characteristics were confirmed by ultraviolet, Fourier-transform infrared, and proton nuclear magnetic resonance spectroscopy. Biocompatible FA-conjugated, Myr-loaded BSA NPs (FA-Myr-BSA NPs) were successfully formulated using a carbonate/bicarbonate buffer. Their morphology, size, shape, physiological stability, and drug release kinetics were studied. Molecular docking studies revealed that FA-Myr-BSA NPs readily bound non-covalently to folate receptors and facilitated active drug endocytosis. FA-Myr-BSA NPs could trigger fast release of Myr in an acidic medium (pH 5.4), and showed high biocompatibility in a physiological medium. FA-Myr-BSA NPs effectively decreased the viability of MCF-7 cells after 24 h with 72.45 µg ml-1 IC50 value. In addition, FA-Myr-BSA NPs enhanced the uptake of Myr in MCF-7 cells. After incubation, a typical apoptotic morphology of condensed nuclei and distorted membrane bodies was observed. The NPs also targeted mitochondria of MCF-7 cells, significantly increasing reactive oxygen species release and contributing to the loss of mitochondrial membrane integrity. The observed results confirm that the newly developed FA-Myr-BSA NPs can serve as a potential carrier for Myr to increase the anticancer activity of this chemotherapeutic.


Subject(s)
Flavonoids/pharmacology , Folate Receptors, GPI-Anchored/metabolism , Folic Acid/chemistry , Serum Albumin, Bovine/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Design , Flavonoids/chemistry , Humans , MCF-7 Cells , Molecular Docking Simulation , Molecular Structure , Molecular Targeted Therapy , Nanoparticles
SELECTION OF CITATIONS
SEARCH DETAIL
...